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ARTICLE INFO ABSTRACT

Since 2000 there has been an on-geing industrial transition to replace long-chain perfluoroalkyl carboxylic acids
(PFCAs), perfluoroaliane sulfonic acids (PFSAs) and their precursors, To date, information on these replacements
including their chemical identities, however, has not been published or made easily accessible o the public, ham-
pering risk assessment and management of these chemicals. Here we review information on fluotinated alterna-
tives in the public domain, We identify over 20 fluorinated substances that are applied in [i] fluoropolymer
manufaciure, [ii] surface treatment of textile, leather and carpets, [iti] surface treatment of food contact materials,
[ivi metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products. We summarize cur-
rent knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the
timited information available, it is unclear whether Huorinated alternatives are safe for hwmans and the environ-
ment, We identify three major data gaps that must be filled to perform meaningful risk assessments and recom-
mend generation of the missing data through cooperation among all stakeholders (industry, regidators, acadernic
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scientists and the public).
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1. Introduction

Since 2000 long-chain perfluoroalkyl carboxylic acids [PFCAs,
CoFon 4 1CO0H, n = 7], perfluorcalkane suffonic acids [PFSAs,
CoFan o 150sH, n = 6] and their potential precussors (Buck et al,
2011}, have attracted attention as global contaminants. Long-
chain PFCAs and PFSAs are problematic because they are highly
persistent  {Fromel and Knepper, 2010; Parsons et al, 2008),
bipaccumudative {Conder et al, 2008) and have been detected ubiqui-
tously in the abiotic environment {Ravne and Forest, 2008), biota
{Giesy et al, 2001), food itemns {Ularke and Smith, 2011} and humans
{(Vestergren and Cousins, 2009), As a result perfluorooctane suifonate
{PFOS) and related substances based on perfluorooctane sulfonyl fluo-
ride (POSF) were listed under Annex B {restriction of production and
use) of the Stockholm Convention in 2009, In 2012 (-4 PFCAs
were identified as vPvB chemicals (very persistent and very
bipaccumudative), and were included in the Candidate List of Sub-
stances of Very High Concern under the European chemicals regulation,
REACH (ECHA, 201%a). In 2013, also perfluprooctanoic acid {PFOA) and
ammonium perfluorooctanoate (APFO) were listed in the Candidate List
of Substances of Very High Concern ECHA (2013a),
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Driven by concerns about their undesired impacts on humans and
the environment, there has been a trend among global producers to re-
place long-chain PFCAs, PFSAs and their potential precursors with their
shorter-chain homologues {Ritter, 2018) or other types of {non }fluori-
nated chemicals (UNEP, 2012) ({these replacements are referred to as
alternatives in the following), These industry initiatives began in 2000
when 3M announced a global phase-out of its products based on Cg,
Cy and Cyo chemistry and replaced them with products based on (4
chemistry such as perfluorobutane sulfonic acid (PFBS) (38, 2000:
Ritter, 2010). In 2006, eight major producers of PFCAs, fluoropolymers
and fluorotelomer substances joined the US EPA 2010/15 PFOA Stew-
ardship Program (1S EP&, 2006) to work towards the elimination of
long-chain PFCAs and their potential precursors by 2015,

I this study we address the question; are the fluorinated alterna-
tives to long-chain per- and polyfluocroalkyl products safe for humans
and the environment? Recent experience with replacements of other
chemicals has shown a “lock-in” problem, ie. one chemical from a
group of structurally similar chemicals was removed from the market
and replaced by other chemicals from the same group. but the basic
problem was not really solved (Goldstein et al, 201%; Soempel et al,
2012). For example, polychlorinated biphenyls (PCBs) were replaced
by short-chain chlorinated paraffins, which are currently being evaluat-
ed under the Stockholm Convention.

To answer this question, information regarding alternatives (includ-
ing chemical structures, physicochemical properties, { bio)degradability,
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bivaccumulation potential, (eco)toxicity, production and releases, and
environmental and human exposure) is needed. However, due o con-
cerns of business confidentiality, most of the information required to as-
sess the safety of alternatives has not been published or made easily
accessible to the public, This lack of data makes it undlear whether alter-
natives have been fully tested hefore they are commercialized. It also
inhibits scientists and civil society organizations, as an essential supple-
ment to regulators and industey, from proactively minimizing the risks
associated with alternatives by conducting monitoring activities and re-
search into the environmental fate and potential adverse effects of alter-
natives {Goldstein et ak, 2013},

Here, we review information on flucrinated alternatives in the public
domain in two respects: {i) to identify which chemicals are {possibly)
applied in various industry branches or consumer products; and (i) to
summarize current knowledge on their environmental releases, persis-
tenice, and exposure of biota and humans. With the information provid-
ed, we aim to give an overview of the on-going transitions to fluorinated
alternatives and of the potential environmental and human exposure
to these chemicals. Due to space limitations, we do not address potential
adverse effects of these chemicals. Related information, however, canbe
found in the following references: Asahi (2006}, Borg and Hakansson
{2012}, ECHA (2013b), EFSA (3010, 20114, 2011b), Gordon {2011},
Hagenaars et al. {2017}, Lau et al. (2007}, Norgaard et al (2010}, and
Wang et al. {20134}, In addition, it should be noted that several types
of nonfluorinated substances are also available as alternatives {(e.g,
dendrimers, siloxanes and silicone polymers) (Poulsen et al, 2005;
LINEPR, 2012), but may not perform as well as fluorinated substances,
particularly in situations where extremely low surface tension and/
or durable oil- and water-repelience is needed {Holt, 2011). For
information on nonfluorinated alternatives, we recommend readers
to consult other studies that specifically address these substances
{e.g., Ulaszewska et al, 2012; Wang et al, 2013b).

2. Production and use of fluorinated alternatives

Here, we summarize the publicly accessible information on the
production and use of flunrinated alternatives in different industrial
branches (for examples, see Fig. 1). Other fluorinated alternatives
might also be on the market; their identities, however, could not be
identified.

2.1, Fluoropolymer manufacture

Historically, almost all producers applied ammonium or sodi-
umn perfluorooctanoate {APFO and NaPF(Q) as processing aids
in the {emulsion) polymerization of polytetrafluoroethyiene (PTFE),
perfluorinated ethylene-propylene copolymer {FEP), perfluoroalkoxy
polymer (PFA) and certain flupreelastomers; and applied ammoni-
um perfluorononanocate (APFN) in the emulsion polymerization of
polyvinylidene fluoride (PVDF) (Prevedouros et al., 2006}, However,
during the recent transition, most of the producers have developed their
own alternatives. Known commercialized fluorinated alternatives are
functionalized perfluoropolyethers {(PFPEs), including (i) ADONA from
3M/Dyneon (CF00RCROF0CHFCR,CO0 NHY, CAS No. 858445-44-
8) (Gordon, 2011); (i) GenX from DuPont {CF;CF,CEOCF(CR)C00™
NHI, CAS No. 62037-80-3) {DuPont, 2018); {iii) cycic or polymeric
functionalized PFPEs from Solvay for its PTFE and PVDF manufacture
{Marchionni et al, 2010; Pieri et al, 2011; Spada and Keng, 2011)
{e.g., a complex process mixture, GFsUO-{CFCF(CF: )0 -{CF{CF3) O in-
CF,CO0H, n = 1-4, m = 0-2, with a molecular weight in the range of
500 to 650 Da has been registered at the Furopean Food Safety Authority
{EFSA), CAS No. 329238-24-6 (EFSA, 2010)); (iv) GFOCF,0CERC00™
NH4 {CAS No, 908020-52-0) from Asahi {(EFSA, 2011a); and {v) another
functionalized PFPE from Chenguang in China (its structure and CAS No,
remains unrevealed) (Xie eral, 2016, 2011 ). In Europe, GenX has been

registered under REACH with a production volume of 10-100 tonnes
per year (ECHA, 2013b).

In addition, some producers, such as Daikin (fwai, 2011), may have
used ammonium perflunorohexanocate {APFHX) as polymerization pro-
cessing aids {supported by higher levels of perfluorchexanoic acid
{PFHxA) in comparison to other PFCA homologues detected in water
samples from a fluoropolymer manufacturing site in France (Dauchy
etal, 2012)). Finally, a Chinese producer may use 6:2 fluorotelomer car-
boxylic acid (6:2 FICA, CgF;CHCO0H, CAS No. 53826-12-3) as an alter-
native processing aid replacing perfluorooctanoic acid (PFOA) (Kuetal,
2011). No information is available on the processing aids currently used
by other fluoropolymer manufacturers,

2.2, Surface treatment of textile, leather and corpets

Side-chain fluorinated polymers, which comprise non-fluorinated
carbon backbones and side-chains containing a mixture of 6:2-14:2

rived from POSF, were widely used in surface treatment products to im-
part water- and oil-resistance to textile, leather and carpets {Buck et al,
2011). A current trend is to use shorter-chain homologues o replace
long-chain flurotelomer- or POSF-based derivatives on side-chains
{Ritrer, 2010). Since 2003, 3M has commercialized a series of surface
treatment products such as Scotchguard PM-3622 (CAS No. 949581~
65-1), PM-490 {CAS No. 940891-99-6) and PM-930 {CAS No. 923298-
12-8) containing C, ((4FeS0,—) side-chain fluorinated polymers de-
rived from perfluorcbutane sulfonyl fluoride (PBSF) (Renner, 2006).
Fluorotelomer manufacturers have developed products based on highly
purified fluorotelomer raw materials (mostly 6:2, see examples on the
OECD Portal on Perfluorinared Chemicals (OECD, 2013)). including
copolymers derived from 6:2 fluorotelomers and organosifoxane
{Unidyne® TG-5521 developed by Daikin and Dow-Corning (Dow
Corning, 2007)). Miteni has commercialized polyfluoroalkyl alcohols
(3:1 and 5:1 FIOHs, C,Fy, . CHL0H, n = 3, 5, CAS No. 375-01-9 and
423-46-1) that can be used as building blocks for side-chain fluorinated
polymers {Miteni, 2012) and Solvay has applied PFPEs such as
Fluorelink® as alternatives to side-chain fluorinated polymers for textile
surface treatment {Solvay, 2011).

Some producers in China and Italy have initiated the production of
perfluorchexane sulfonyl fluoride {PHXSF, CsFy3500F) -based derivatives
as alternatives in surface treatment products (China MEP, 2012; Miteni,
2012), but these can degrade into perfluorohexane sulfonate (PFHXS) in
the environment (D'eon et al, 20006, Martin et al, 2006) and are thus
considered as long-chain PFSA precursors (Buck et al, 2011), In China,
it is estimated that in the next 5-10 years production of surface treat-
ment products containing PHxSF- or PBSF-derivatives will reach more
than 1000 tonnes per year {Huang et al.. 2010).

2.3, Surface treatment of food contact materials

After 3M ceased its production of POSF-based side-chain fluorinated
polymers {e.g, CAS No. 92265-81-1) and phosphate diesters (SAmPAP,
e.g., FC 807, CAS No. 30381-98-7) that were used in food contact materials
{304, 2000), there is no evidence that PBSF-based derivatives are used as
alternatives. Fluorotelomer manufacturers have developed products
based on 6:2 fluorotelomers to replace their earlier products [both side-
chain fluorinated polymers and phosphate diesters (diPAPs}] that were
based on longer-chain fluorotelomer derivatives {Loi et al,, 2013). For ex-
ample, since 2008, seven 6:2 fluorotelomer-based side-chain fluorinated
polymers have been registered in the Inventory of Effective Food Contact
Substance {FCS) Notifications of the United States Food and Drug Admin-
istration; they are CAS No. 1345817-52-8 by Asahi, CAS No. 1012783-70-
8§, 1158951-85-9, and 1206450-09-0 by Daikin, and CAS No, 1071022-25-
7, 357624-15-8, and 1071022-26-8 by DuPont (US FDA, 2013a). In
addition, products based on PFPEs such as Solvera® from Solvay {(chemi-
cal structures are likely simifar to HO(O){OHPO-(CHoCH0) - CHaUF -
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Fig. 1. Exarnples of fluorinated alternatives identified in different industry branches.

{OCF, ) p-{ OCFCF, ) -OCF,CH,-(OCHCH, ) -OP(OH){(O}(OH) (Trier et al,
2011)) have been used as alternatives {Solvay, 2011),

24, Metal (clromium) plating

Historically, salts of PFOS have been used as wetting agents and
mist-suppressing agents in decorative plating and non-decorative
hard plating. Recent technology development using chromium-flf in-
stead of chromium-VI has made PFOS use in decorative chrome plating
obsolete. Chromium-ill, however, cannot be used for hard chrome
plating (UNEP, 2012). In Europe, salts of 6:2 fluorotelomer sulfonic
acid {6:2 FISA, CgF3CHS0sH) are applied as alternatives to PFOS,
however, they can only partly be applied in decorative plating due to
stightly higher surface tension compared to PFOS (UNEP, 2012). In
addition, N{Et)4-PFBS {CAS No. 25628-0(8-4) is registered for metal
plating under REACH with a production volume of 1-10 rtonnes per
annum (ECHA, 2013h). Also, a German producer reported a produc-
tion of 20-50 tonnes of PFRS-based [{4FeSCN{CH; YCHCH-OLP{O)OH
{CAS NMNo. 120945-47-3) in 2003, which is used as defoamer in
the electroplating industry {OECD, 2005). In China, several producers
have used F-53 (salts of CgF30CF,CE,S0.H, CAS No. 754825-54-7)
and F-533B (C-CoF10UFCR,50:K, CAS No, 73606-19-6), likely derived
from fluorotelomer raw materials, since the late 1970s {(Huang et al,
2010; UNEP, 2012). It is estimated that about 20-30 tonnes of F-53

and F-53B were used in 2009 in the metal plating industry (both deco-
rative and hard metal plating) in China (Huang et al, 2010},

2.5, Fire-fighting foams

In the past, various PFCA-, PFSA-, and fluorotelomer-based derivatives
were added (i) as film formers in agueous film forming foams {AFFFs)
and film forming fluoroproteins (FREPs), (ii) as fuel repellents in
fluoroprotein foams (FPs), and (i) as foam stabilizers in FFFPs and
alcohol-resistant agueous film-forming foams (AR-AFFFs) (Backe et al,
2013; Kleiner and tho, 2008; Place and Field, 2012). In 2002 3M, which
was the only producer, ceased its global production of POSF-based
AFFFs (Place and Field, 2012); and thereafter has developed a fire sup-
pression agent based on a gasepus fluorinated ketone [(F,CR,C{0)
CHF(CF3),, CAS No, 756-13-8] (UNEP, 2012). Also, AFFFs based on pure
6:2 fluorotelomers are under development to replace the early genera-
tions that are based on a mixture of predominantly 6:2 and 8:2
fluorotelomers (Kiein, 2012; Kleiner and Fho, 2009). For example,
DuPont commercialized Forafac® 1157 that is based on 5:2
fluorotelomer sulfonamide alkylbetaine [6:2 FTAB, CgF; 30 HS0,.
NHCHgN " {CH3),CHLC00 7] (Hagenaars et al, 2011; Moe et al,
2G12; Pabon and Corpart, 2002) and Forafac® 1183 that is based
on 6:2 fluorotelomer sulfonamide aminoxide [CgF3CHLSONH
C3HgN{O}{(CH; ), CAS No, 80475-32-7] (Jensen et al,, 2008). In addi-
tion, a Chinese institute has developed an AFFF formulation based
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on a PFBS derivative [C4EgSONH{CH,)-NH(CH3)7 | (Yang et al,
2009; Zhao, 2012}, its commercialization, however, is unciear.

2.6, Miscellaneous

In addition to those mentioned above, we have identified the fol-
lowing fluorinated alternatives and their potential uses: (i) The po-
tassium salt of PFBS {CAS No. 29420-49-3) is marketed as a flame
retardant for polycarbonate resing; 30-50 tonnes of it were pro-
duced in 2003 in Germany (Hubei Hengxin, 2013, Miteni, 2012;
Ritsubishi, 2013, DECD, 2005; Wuhan Chemical, 2013). (ii) The
imide salt of PFBS [(C4FsS02)2H, CAS No. 39847-39-7] is marketed
as a surfactant, acid catalyst, and as a raw material for jonic Hguids
(Mitsubishi, 2013). (i) A PFHxA-derivative [(F(CF, 1,CONH{CH, )5
SHOCH3 )3, CAS No. 154380-34-4} is marketed as a surface treatment
for glasses, natural stones, metals, wood, celfulose, cotton, leather and
ceramics {Miteni, 2012). (iv) In Europe, Dow Corning registered a copol-
ymer comprising 6:2 fluorotelomers and siloxane {CgF.CH.CH,
SHOCH3 )3, CAS No. 85857-16-5) under REACH; its intended use is
upknown (ECHA, 2013b). {v) Nanofilm spray products based on
polysiloxanes with 6:2 fuorotelomers in (some of) the side-chains are
marketed for coatings of nonabsorbing floor materials {Nergaard et al,

SGaF {CAS No. 16090-14-5) in an amount farger than 11.4 tonnes in
2011 (USEPA, 2012), which is likely used as a monomer for a copolymer
used in polymer electrolyte fuel cells {Uematsu et al, 2006). (vii) In the
US DuPont produced CFDCF(CF;)COF (CAS Mo, 2927-83-3) in an
amount farger than 114 tonnes in 2011 (US EPA, 2012); and its use
remains unknown.

3. Environimental and human exposure to fluorinated alternatives
3.1, Environimental releases

Similarly to APFO and APFN, fluorinated alternatives applied as poly-
merization processing aids may enter the environment at manufactur-
ing sites where they are produced and used to produce fluoropolymers
as well as during use and disposal of fluoropolymer resins, For example,
ADONA was monitored between fune 2008 and November 2009 in the
River Alz {Germany) downstream of wastewater effluent discharges
from 3M/Dyneon's factory and was detected in all samples {range
from 0.32 to 6.2 pg/i (Balfl), 2010a)). In addition, ADONA is emitted 1o
air through exhaust gases and then deposited to the ground nearby
3n/Dyneon's factory. The average deposition rate of ADONA 1o surface
soil near the plant between December 2009 and May 2010 is estimated
at 634 ng/(m? 4) (Bakfl}, 2010b). GenX has also been detected in river
water downstream of effluent discharges from the DuPont factory in
North Carolina (USA) {Strynar et al, 2012}, The discharge of PRHxA
from a fluoropolymer manufacturing plant in France to the receiving
river is estimated at 10 t/yr (Dauchy et al, 2012).

To date, there is no information on releases during use and disposal of
fluoropolymer resins that contain fluorinated alternatives; but residual
{evels of some fluorinated alternatives in fluoropolymer resins are report-
ed. The residual levels of ADONA in the final sintered fluoropolymer ma-
terials and an unsintered fluoropolymer micropowder are <.02 mg/kg
and 33 mg/kg, respectively (EFSA, 2011b); and GenX residuals in
fluoropolyimer resins are below 0.2 mg/kg (DuPong, 2070).

For other fluorinated alternatives, no information regarding releases is
available. However, elevated levels of PFBS and/or perfluorobutaneic acid
{PFBA, an impurity in PBSF-based derivatives) in water samiples from the
river Rhine watershed {Lange ef al, 2007; Moller et al, 2010), German
coast {Ahrens et ab, 2010a), Tokyo Bay {Japan) {Ahrens et al., 2010b)
and Morthwest Pacific Ocean (Cai ef al, 2012) indicate an increasing use
and release of PBSF-based derivatives and other potential precursors.

3.2, Persistenice

Extensive studies have suggested that 6:2 fluorotelomer-based (Lee
etal, 2010; Linetal, 2010a, 20100; Moe et al, 2012; Wang et al, 2011,
2012 Young and Mabury, 2010; Zhao et al, 2013) and PBSF-based alter-
natives {Benskin et al, 2012, 2013; [Yeon et al, 2006; Martin et al,
2006; Plumiee et al, 2009) can undergo similar degradation processes
{reaction with OH radicals, photolysis or biodegradation, etc.) as their
higher homologues and be transformed into corresponding short-
chain PFCAs and/or PFSAs (such as PFBS, PFBA or PFHXA) in the environ-
ment or biota. Similarly to 6:2 fluorotelomers, 3:1 and 5:1 FIOHs can
undergo reaction with OH radicals and form short-chain PFCA homo-
logues in air (Hurley et al, 2004; Sulbaek et al, 2006). These short-
chain PFCAs and PFSAs are as persistent in the environment as their
long-chain homologues.

For PFPE-based alternatives, information on degradability is scarce
and often incomplete. Available information shows that ADONA is not
readily biodegradable (Gordon, 2011), but starts to decompose ther-
mally at 125 °C with completion at 175 °C, leading to formation of vol-
atile substances (details on degradation products were not provided)
{EFSA, 2011b). No hydrolysis and biodegradability of GenX was ob-
served in tests according to the OECD test guidelines 111 {tested at
pH = 4,7,9 at 50 °C) and 3018 {tested for up to 28 days), respectively
{ECHA, 2013b). In addition, an atmnospheric degradation study of a non-
functionalized PFPE-based product, Galden® HT70 {(consisting of
maindy CROCF(CF)CF,0CF,0CF; with smaller amounts of CFOCF(CF;)
CFOCF,0CF,0CF; and longer-chain analogs) indicates that these PFPEs
degrade slowly in air with a lifetime greater than 46 years {through
reaction with C1 and OH radicals) and 800 years (through photolysis),
respectively {Young et al,, 2006).

3.3, Exposure of bicta and humans

The bicaccumuilation potential, in terms of serum elimination half-
life, of PFBA, PFBS, PFHxA, PFHxS, PFOA and PFOS in humans and mam-
mals has been well studied {see Table 1). In general, PFBA, PFBS and
PFHxA, which can be used as alternatives to their higher homologues
in somne cases or occur as undesired byproducts or degradation products
of PBSF- or 6:2 fluorotelomer-based alternatives, have shorter half-lives
in humans and biota than their longer-chain homologues {Borg and
Hakansson, 2012; twai, 20171, Wilhebn et al, 2010). In contrast, PFHxS
has similar or even longer serum half-lives than PFOS in all tested ani-
mals {except female rats) and in humans, which makes PFHxS inappro-
priate as an alternative to PFOS. For other fluorinated alternatives, only
two industry studies of GenX in rats and mice were found (reported to
the European Chemicals Agency (ECHA)) (ECHA, 2013Db); and the data
reported are only sufficient to calculate an approximate range of the
serum ehimination half-life of Gen¥X in rats and mice, see Table 1.

Regarding the absolute exposure levels, a recent study on the tem-
poral trends of PFCAs and PFSAs in serum from primiparous women in
Sweden between 1996 and 2010 observed a marked increase of PFBS
and PFHxS over tirne {Glynn et al, 2012). Similar observations of an in-
creasing PFHxS exposure trend after 2006 in the US have aiso been re-
ported by Kato et all (2011). For other fluorinated alternatives, no
temnporal trend data are available,

4. Major data gaps and future perspective

There is some publicly accessible information on fluorinated
alternatives; it is, however, still heterogeneous among industrial
branches and not sufficient for conducting realistic risk assessments.
There are three major data gaps: (i} the identity of many alternatives
remains unknown, particularly in those industry branches or regions
that are less strictly regulated, whereas e.g. in Europe (EFSA, 2013)
and the US (1S FDA, 2013b) food contact material producers are
abliged to submit specific safety data; (ii) for alternatives that have
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Tabie 1
Serwm elinyination half-live

of PFBS, PFHxS, PFOS, PEBA, PFHxA, PFOA, GenX, and ADONA in male (M) and female (F) rats, mice, monkeys and bumans, {p some cases,
in the form of “arithmetic mean + standard deviation”, while in other cases when the standard deviation 1

1alf-life §

ess than 15% of the arithretic mean only the arithmetic mean i

Notes on studies on rais, mice and monkeys provide information on dosing ruethod {single oral dose or single intravenous (IV) dose) and dosage {(in ppou mg substance/kg bw). ‘Notes on

u_w

studies on humans provide sample nurnbers (n) of humans involved.

means no data available.

PEAAS Rats Mice Mortkeys Hurmanos
2y Notes ty;2  MNotes i Notes G Notes iy ti Notes tio Notes

PFBS (F) 4h v 8h  Oral’ - - - - 83 4 42h §4+2h 2 46d
PEBS (M) 5h 3pprn 5h 30 ppm - 954270 10ppm 10ppm 24 4 7d
PEHxS (F)  2d w3 254 Oraf? 274 Oral® 87 £27d 12 128 & o= 24

8.8 yr
PFHxS (M) 29d  I0ppm - - 31d 1 ppm 28d 20ppm 141 £ 10 ppm - - 82 4+ 51yr

304d
PFOS (F) 62d  Oral® 714d 384 Oral® 304 Oral® 1104 s - - 584 1yr
PFOS (M) 38d 2ppm 414 15ppm 43d 1 ppm 36d 20ppm 132d Zppm - - 54 4 3.7 yr
PFBA (F) 1h ' 28 Qral® 3h Oral® 3h Oral® 41h ' - - 87 £ 31h
PFBA {M) 6h 3gppm 9h  30ppm 134 5h 10 ppm 16 4 30ppm 40h 10 ppm - - 68 4 35h
7h
PFHXA(F)  04h IV 3.2h IV <72 h Gastric® 24 b Ve
PFHxA (M) 1h WOppm  24h 15ppm <72 h 50 ppim - 53h 10 ppm - <28 d
PROA {F) 2n IV - - 17d not reported’® - 334+£7d - - 33yt
PFOA (M) 6d 20 ppm ~ - 19d - - 21+104 t0ppm - - 38+ 17yr =
PFOA (all) - - - - - - - - - - - 326 yr n o= 138118
PFOA (all) - - - - - - - - - - - - 23yr n o= 20018
PFOA (all) - - - - - - - - - - - - 29y o 6431418
PFOA (all) - - - - - - - - - - - - 85y =
1 02914.18
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234 11 d n = 316V
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tal {2011y, YECH

tal. {2009), *Sundsird
rede et al, (2010, PBartel] ot al. (201
n serum were high. P Thase studies &

'Oisen et al. {2609, 2Che
MMoker and Gorman (2003),

these substances and the

been identified, information on their potential impacts on humans
and the environment is insufficient (e.g., knowledge on degradabili-
ty, bicaccumulation potential and {eco)toxicity of PFPEs is largely
nussing.); (iit) for all fluorinated alternatives, the actual volumes
that are produced, used and emitted remain unknown.

Furthermwre, even those fluorinated alternatives that are considered
safe because of low acute toxicity and bicaccumulation according to
current regulations may still pose risks in the future. For example,
short-chain PFCA and PFSA homologues such as PFHxA and PFBS
are as persistent in the environment as the long-chain homologues,
Thus, the current increasing global production and use of these
chemicals and their potential precursors will {ead to increasing
widespread environmental and human exposure that will last for
the foreseeable future, I, in the future, risks associated with short-
chain homelogues are discovered and regulatory action needed, it
is important to be aware that it will take decades for global environ-
mental levels of these short-chain homnlogues to respond to any
emission reductions,

in order to prevent a "lock-in" problem in the field of fluorinated
alternatives, much effort is needed. Above all, communication among
stakeholders {manufacturers of fluorinated materials, industrial users
of these materials, regulators, scientists and the public) needs to be im-
proved and intensified. A transparent knowledge exchange among
stakeholders would enable; (i) developing accurate analytical technigues
for alternatives that can be used for further laboratory testing and field
monitoring of these chemicals (e.g. PFPEs (Di Lorenzo, 2012)); (i) devel-
oping more sophisticated study designs and data analysis for enviton-
mental fate, toxicity and bisaccumulation studies to facilitate up-to-
date regulatory decisions; and {iii) developing a new industrial ecology
where the latest scientific findings can be readily implemented in the
product design phase to develop materials with similar function, but
with negligible hazardous propetties.

17}, “Chang et al. (2008), 7
1) 16F

on samples from peopls who wi

1 {2007,
exposed to

A {2011h)y 1T

2d to FFOA mainty through hi
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